超值組合
圖片待上傳
定價:300元
=
陳耀茂系列 (單書79折,雙書75折)<點此進入
2022/05/15~2022/06/30
原價:1020元
組合價:765元
主題書展 2022五南官網週年慶【理科必買】/單書79折、二本以上75折
滿額優惠折扣 5/5~6/30週年慶全館滿599打95折
    上篇:Excel應用
    1.時間數列分析用語解說
    1.1 意義及範圍
    1.2 時間數列的特性
    1.3 時間數列的種類
    1.4 時間數列的組成分子
    1.5 時間數列的模型種類
    1.6 時間數列組成分子的估計方法
    1.7 時間數列的迴歸分析法
    1.8 平均法與平滑法
    1.9 時間數列的變換方式
    1.10 預測精確度的衡量
    1.11 自我相關函數和偏自我相關函數
    1.12 自我迴歸模型AR(p)
    1.13 移動平均模型MA(q)
    1.14 自我迴歸移動平均模型ARMA(p, q)
    1.15 自我迴歸整合移動平均模型ARIMA(p, d, q)
    1.16 相關係數
    1.17 隨機漫步
    1.18 白色干擾
    1.19 傳遞函數
    1.20  時間數列預測法的分類
    1.21 模型的估計與選擇
    1.22 自我迴歸的檢定
    2.時間數列分析可以知道什麼?
    2.1 如表現成圖形時
    2.2 如採取移動平均來觀察時
    2.3 如使用自我相關係數時
    2.4 如使用交差相關係數時
    2.5 如利用指數平滑化時
    2.6 如利用自我迴歸模型時
    2.7 利用季節性的分解時
    2.8 如利用光譜分析時
    3.時間數列圖形的畫法
    3.1 時間數列數據與其圖形
    3.2 時間數列圖形的畫法
    4.時間數列數據的基本類型
    4.1 3個基本類型
    4.2 3個基本類型是重要理由
    4.3 季節性的分解
    5.長期趨勢簡介
    5.1 長期趨勢或長期傾向
    5.2 趨勢的檢定
    6.利用曲線的適配預測明日
    6.1 利用最小平方法的曲線適配
    6.2 利用傅立葉級數的曲線適配
    6.3 利用spline函數的曲線適配
    6.4 曲線的適配與預測值的求法
    7.週期變動與季節變動
    7.1 週期變動
    7.2 季節變動
    7.3 光譜分析簡介
    8.不規則變動與白色雜訊
    8.1 不規則變動
    8.2 不規則變動的製作方式
    8.3 檢定隨機性
    8.4 白色雜訊
    9.時間數列數據的變換
    9.1 取差分
    9.2 進行移動平均
    9.3 採取落後
    9.4 進行對數變換
    10.指數平滑化簡介
    10.1 指數平滑化
    10.2 利用指數平滑化的預測
    11.自我相關係數簡介
    11.1 自我相關係數
    11.2 自我相關係數與相關圖
    12.交差相關係數簡介
    12.1 2個變數的時間數列數據
    12.2 交差相關係數與先行指標
    13.自我迴歸模型AR(p)簡介
    13.1 自我迴歸模型
    13.2 ARMA(p, q)模型
    13.3 ARIMA(p, d, q)模型
    13.4 Box-Jenkins法的例子
    14.隨機漫步簡介
    14.1 隨機漫步的作法
    14.2 隨機漫步的預測值
    15.時間數列數據的迴歸分析
    15.1 迴歸分析與殘差的問題
    15.2 利用自變數的自我迴歸模型
    15.3 預測值的計算
    16.傳遞函數簡介
    16.1 何謂傳遞函數
    16.2 各種傳遞函數的例子
    下篇:SPSS應用
    1.時間數列數據的輸入方式
    1.1 時間數列分析的基本步驟
    1.2 日期的定義
    2.時間數列數據的變換方式
    2.1 前言
    2.2 利用差分製作新的時間數列
    2.3 利用中心化平均製作新的時間數列
    2.4 利用落後製作新的時間數列
    3.時間數列數據的圖形表現方式
    3.1 前言
    3.2 時間數列圖形
    4.自我相關、偏自我相關
    4.1 前言
    4.2 自我相關與偏自我相關
    5.交叉相關
    5.1 前言
    5.2 交叉相關
    6.光譜分析
    6.1 前言
    6.2 光譜(Spectral)分析
    7.季節性的分解
    7.1 前言
    7.2 週期性的分解
    8.指數平滑法
    8.1 前言
    8.2 指數平滑化
    9.時間數列數據的迴歸分析
    9.1 前言
    9.2 時間數列數據的迴歸分析
    9.3 自我相關的迴歸與複迴歸分析之不同
    10.自我迴歸模式AR(p)
    10.1 前言
    10.2 自我迴歸模式AR(p)
    11.移動平均模式MA(g)
    11.1 前言
    11.2 移動平均模式MA(q)
    12.ARMA(p, q)模式
    12.1 前言
    12.2 ARMA(p, q)模式
    13.ARIMA(p, d, q)模式
    13.1 前言
    13.2 ARIMA(p, d, q)模式
    14.季節性ARIMA模式
    ─SARIMA(p, d, q), (P, D, Q)s
    14.1 前言
    14.2 季節性ARIMA模式
    15.X12-ARIMA
    15.1 X12-ARIMA簡介
    15.2 NumXL簡介
    15.3 分析方法
    16.建立傳統模型
    16.1 前言
    16.2 求最適預測值的步驟
    16.3 預測時選擇自變數的步驟
    16.4 事件變數的利用法
    17.套用傳統模型
    17.1 前言
    17.2 想利用相同的模式再延伸預測時的步驟
    17.3 想比較2個腳本時的步驟
    18.建立時間原因模型
    18.1 簡介
    18.2 目標數列已知時
    18.3 若目標數列未知時
    19.套用時間原因模型
    19.1 簡介
    19.2 時間原因模型預測
    19.3 時間原因模型實務
    19.4 求最適預測值的步驟
    附錄 RIMA(p, d, q)模式的自我相關圖與偏自我相關圖
    參考文獻
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
圖片待上傳
    
申訴專線:02-2705-5066分機808 客服專線:02-27055066 傳真:02-27066100
五南圖書出版股份有限公司 地址:106台北市和平東路二段339號4樓
劃撥帳號:01068953[請註明收件人、地址、手機及e-mail信箱供寄書用]