R統計軟體與多變量分析:含JASP與jamovi
作  者╱
陳正昌、林曉芳
出版社別╱
五南
書  系╱
研究&方法
出版日期╱
2024/06/14   (2版 1刷)
  
即日起五南舊官網僅提供書籍查詢,如欲購書,請至五南新官網 https://www.wunan.com.tw/
I  S  B  N ╱
978-626-393-420-7
書  號╱
1HAL
頁  數╱
456
開  數╱
16K
定  價╱
550 (特價 440)
教學資源╱
投影片((外加))


☉陳正昌
現職:
國立屏東大學教育學系副教授

學歷:
國立政治大學教育學博士

著作:
《基礎統計學:使用Excel與SPSS》
《SPSS與統計分析》
《Minitab與統計分析》
《R統計軟體與多變量分析》
《統計分析與R》
《多變量分析方法:統計軟體應用》
《多變量分析:使用SPSS與STATA》

☉林曉芳
現職:
朝陽科技大學師資培育中心副教授

學歷:
國立政治大學教育研究所教育心理與輔導組博士
國立政治大學教育研究所碩士
逢甲大學統計學系

經歷:
明道大學課程與教學研究所副教授
嶺東科技大學應用外語系助理教授

研究專長:
教育心理(學習心理、教學策略、教育測驗與評量)
量化研究方法(教育統計、應用統計、統計應用軟體、多變量分析)
性別教育(性別主流化、性別與社會)

1   多變量分析與R統計軟體簡介
1.1 多變量分析方法簡介
1.2 R統計軟體的特點及限制
1.3 R統計軟體的初步使用
1.4 資料的讀入與儲存
1.5 以矩陣進行典型相關分析
1.6 以矩陣進行多變量變異數分析
1.7 以選單進行分析
1.8 本書所用程式套件
1.9 JASP與jamovi簡介

2   多元迴歸分析
2.1 迴歸的意義
2.2 簡單迴歸
2.3 多個預測變數的多元迴歸模型
2.4 虛擬變數的多元迴歸分析
2.5 預測變數的選擇
2.6 樣本數之決定
2.7 迴歸診斷
2.8 使用JASP分析
2.9 使用jamovi分析
2.10 分析結論

3   邏輯斯迴歸分析
3.1 邏輯斯迴歸分析適用時機
3.2 邏輯斯迴歸分析的通式
3.3 邏輯斯迴歸分析模型檢定
3.4 預測的準確性
3.5 邏輯斯迴歸分析係數的解釋
3.6 使用JASP分析
3.7 使用jamovi分析
3.8 分析結論

4   典型相關分析
4.1 典型相關分析之概念
4.2 典型加權係數及典型相關係數
4.3 典型負荷量與平均解釋量
4.4 交叉負荷量與重疊量數
4.5 整體檢定與維度縮減檢定
4.6 效果量
4.7 典型函數的解釋
4.8 典型相關分析的基本假設
4.9 使用JASP分析
4.10 分析結論

5   區別分析
5.1 區別分析的理論基礎
5.2 區別分析的基本假定
5.3 區別分析的步驟
5.4 二次方區別分析
5.5 區別分析與集群分析之異同
5.6 區別分析與典型相關之異同
5.7 使用jamovi分析
5.8 分析結論

6   多變量平均數之檢驗
6.1 單變量與多變量的差異
6.2 使用多變量分析的理由
6.3 多變量單一樣本平均數差異檢驗
6.4 多變量獨立樣本平均數差異檢驗
6.5 多變量相依樣本平均數差異檢驗
6.6 分析結論

7   多變量變異數分析
7.1 單因子多變量分析基本統計概念
7.2 多變量變異數分析(MANOVA)之基本假設
7.3 單因子獨立樣本多變量變異數檢定方法
7.4 後續分析
7.5 效果量
7.6 使用JASP分析
7.7 使用jamovi分析
7.8 分析結論

8   主成分分析
8.1 主成分分析之功能
8.2 主成分分析與因素分析的比較
8.3 主成分分析的求解
8.4 使用JASP分析
8.5 使用jamovi分析
8.6 分析結論

9   探索性因素分析
9.1 因素分析之基本概念
9.2 因素分析之意涵
9.3 因素分析之步驟
9.4 使用JASP分析
9.5 使用jamovi分析
9.6 分析結論

10   集群分析
10.1 集群分析概說
10.2 集群分析的意義及目的
10.3 相異性及相似性的計算
10.4 集群分析之方法
10.5 集群分析與其他方法之比較
10.6 使用jamovi分析
10.7 分析結論

11   徑路分析
11.1 前言
11.2 徑路分析的基本假定
11.3 徑路分析的重要步驟
11.4 使用變異數—共變數矩陣進行分析
11.5 使用JASP分析
11.6 使用jamovi分析
11.7 分析結論

12   驗證性因素分析
12.1 發展理論模型
12.2 評估模型的辨認
12.3 進行參數估計
12.4 評鑑模型的適配度
12.5 進行模型修正
12.6 二階驗證性因素分析
12.7 使用JASP分析
12.8 使用jamovi分析
12.9 分析結論

13   結構方程模型
13.1 結構方程模型的特點
13.2 結構方程模型=驗證性因素分析+徑路分析
13.3 結構方程模型分析步驟
13.4 使用JASP分析
13.5 使用jamovi分析
13.6 分析結論

14   偏最小平方結構方程模型
14.1 兩種結構方程模型
14.2 PLS-SEM的特點
14.3 PLS-SEM的分析步驟
14.4 使用seminr程式套件
14.5 使用matrixpls程式套件
14.6 使用JASP分析
14.7 分析結論

15   多層次模型
15.1 多層次資料適用時機
15.2 簡單迴歸分析
15.3 兩個縣市之簡單迴歸分析
15.4 二十個縣市之簡單迴歸分析
15.5 二層次模型
15.6 二層次模型及其次模型
15.7 多層次模型的估計
15.8 模型的評估
15.9 估計值檢定
15.10 樣本數的決定
15.11 分析步驟
15.12 使用jamovi分析
15.13 使用JASP分析
15.14 總結

輕鬆搞定!新課
綱系統思考素養
的教與學:不被
機器人取代的能

Crack t
he Case
, Not Y
our Hea
d: A Be
ginner’
s Guide
To Sol
ving Yo
ur Thes
is Puzz
le
不用數字的研究
:質性研究的思
辯脈絡
結構方程模式理
論與實務:圖解
Amos取向(
附光碟)
學位論文撰寫方
法論
論文Easy寫
:告訴你撰寫論
文的眉眉角角


投影片((外加))

若要索取未隨書附送(外加)且未於此提供下載的教學資源,請詳洽業務人員(02-27055066#824)(僅提供教師使用)

1HAL.RAR
1HAL-2E資料檔.ZIP
1HAL2版_CH02多元迴歸分析_1130723師新更正.PDF



迴歸分析(regression analysis)在研究一個或多個自變數對依變數的影響情況,它多用於預測、估計與解釋的統計方法;所謂的預測、估計即是以一個或多個預測變數來描述一個特定效標變數的分析方法(陳順宇,2000)。迴歸分析也是機器學習的一種監督式學習(supervised learning)技術,旨在由訓練資料中學到或建立一個模型,並依此模型推測新的實例。
  迴歸分析適用於自變數(independent variable,又稱為預測變數,predictor)及依變數(dependent variable,又稱為效標變數,criterion)均為計量的變數(含等距變數及比率變數)的分析。如果自變數及依變數各為一個,稱為簡單迴歸;如果有多個自變數,一個依變數,稱為多元迴歸或複迴歸(multiple regression);如果自變數及依變數均為多個,則是多變量多元迴歸(multivariate multiple regression)。
  假使自變數是定性的變數(如為名義變數或次序變數),應將該變數轉換為虛擬變數(dummy variable);如果依變數是二類的名義變數,通常會進行二分的邏輯斯迴歸分析(binary logistic regression analysis)或probit機率迴歸分析;假使依變數是多類別的名義變數,通常會進行區別分析(discriminant)或多項式邏輯斯迴歸分析(multinomial logistic regression analysis);如果依變數是次序變數,則可進行次序性邏輯斯或機率迴歸分析。
2.1 迴歸的意義
  1885年Francis Galton(1982-1911)與Karl Pearson(1857-1936)在其「Regression towards Mediocrity in hereditary Stature」研究中,發現身高高的父母,其子女之平均身高低於父母的平均身高;反之,身高矮的父母,其子女之平均身高高於父母的平均身高,發現子代有趨向全體平均身高的現象,當時以「regression」一詞表示這樣的效應,表示兩極端身高會「迴歸」到平均數的現象。
  圖2-1散布圖的X軸是父母身高,以(父親身高 + 母親身高 × 1.08)/ 2代表(因為父親平均身高是母親的1.08倍)。Y軸是子女身高,如果是男性以原始身高代表,女性則乘以1.08倍。圖中的虛線代表父母身高與子女身高相同,斜率為1;直線則是迴歸線,斜率為0.73。由於迴歸線的斜率小於1,所以子代的身高不會等於父母的身高。而兩線相交的地方是(175.82, 175.85),父母身高超過175.82公分(平均數),則子代平均身高比其父母矮;反之,父母身高不到175.82公分,子代平均身高會比其父母高。
  迴歸分析與變異數分析(analysis of variance)是研究者經常使用的統計方法。而迴歸分析主要的用途有二:一為解釋,二為預測。解釋的功能主要在於說明預測變數與效果變數間的關聯強度及關聯方向;預測的功能則是使用迴歸方程式,利用已知的自變數來預測未知的依變數。例如:研究者可以利用高中生在學校的各科畢業成績為預測變數,而以其大學入學成績為效標變數,來建立迴歸方程式,以解釋哪些科目對大學入學成績最有預測作用,及其總預測效果如何。如果其他條件相同,則可利用今年度尚未參加大學入學考試的高中應屆畢業生的各科畢業成績,以預測他們參加入學考試的成績。實務上,兩種取向並未嚴格區分,經常合併使用。