用JASP完成論文分析與寫作(完整版)
作  者╱
胡昌亞、楊文芬、游琇婷、黃瑞傑、鄭瑩妮、王豫萱、陳燕諭、黃敦群、陳怡靜、林義挺、范思美、黃柏僩、李怡青
出版社別╱
五南
書  系╱
研究&方法
出版日期╱
2024/01/01   (1版 1刷)
  
即日起五南舊官網僅提供書籍查詢,如欲購書,請至五南新官網 https://www.wunan.com.tw/
I  S  B  N ╱
978-626-366-924-6
書  號╱
1HAR
頁  數╱
248
開  數╱
20K
定  價╱
350 (特價 277)
教學資源╱
投影片((外加)),教學影片((外加))

※書籍推薦人
司徒達賢講座暨名譽教授/國立政治大學企管系
史習安教授/國立成功大學國際企業研究所
林宇聲總經理/台新創業投資股份有限公司
張偉雄特聘講座教授/國立臺灣大學工商管理學系暨商學研究所
戚樹誠教授/國立臺灣大學工商管理學系暨商學研究所
陳世哲特聘教授/國立中山大學
陳寶蓮教授/國立中山大學人資管理研究所
黃良志教授/國立中正大學勞工關係系
溫金豐教授/國立陽明交通大學經營管理研究所
楊君琦教授/輔仁大學企管系
鄭伯壎特聘教授/國立臺灣大學心理學系
譚丹琪特聘教授/國立政治大學國際經營與貿易系

胡昌亞
學歷:美國喬治亞大學工商心理學博士
現職:國立政治大學企業管理學系特聘教授

楊文芬
學歷:國立交通大學經營管理研究所博士
現職:國立中正大學企業管理學系副教授

游琇婷
學歷:美國伊利諾大學香檳分校心理計量博士
現職:國立政治大學心理學系教授

黃瑞傑
學歷:國立臺灣科技大學管理研究所博士
現職:國立臺北商業大學企業管理系教授

鄭瑩妮
學歷:國立政治大學心理學系博士
現職:國防大學心理及社會工作學系副教授

王豫萱
學歷:國立政治大學企業管理學系博士
現職:國立中山大學人力資源管理研究所助理教授

陳燕諭
學歷:國立政治大學企業管理學系博士
現職:國立陽明交通大學經營管理研究所助理教授

黃敦群
學歷:國立臺灣科技大學企業管理研究所博士
現職:國立彰化師範大學人力資源管理研究所副教授

陳怡靜
學歷:國立政治大學企業管理學系博士
現職:國立臺灣師範大學科技應用與人力資源發展學系副教授

林義挺
學歷:國立中央大學人力資源管理研究所博士
現職:國立中興大學企業管理學系助理教授

范思美
學歷:國立政治大學企業管理學系博士
現職:國立政治大學企業管理學系博士後研究員

黃柏僩
學歷:國立臺灣大學心理學系博士
現職:國立政治大學心理學系副教授

李怡青
學歷:美國康乃狄克大學社會心理學博士
現職:國立臺灣大學心理學系教授

Chapter 01   JASP簡介
1. JASP簡介
2. JASP
3. JASP介面簡介
4. JASP「功能選單」簡介:開啟內建資料檔與分析檔
5. JASP「功能選單」簡介:各類功能設定
6. JASP「資料視窗」簡介
7. JASP「分析視窗」簡介
8. JASP「報表視窗」簡介
9. 參考文獻
10. 本書資料檔

Chapter 02   資料設定與變數計算簡介
1. JASP資料管理簡介
2. 以JASP讀取SPSS資料檔
3. 以JASP讀取.csv純文字檔
4. 計算新變數:反向計分
5. 計算新變數:平減至樣本平均數
6. 選擇部分樣本
7. 其他
8. 參考文獻

Chapter 03   探索性因素分析
1. 探索性因素分析概念簡介
2. JASP分析設定
3. JASP報表解讀
4. 分析結果撰寫範例
5. 參考文獻

Chapter 04   驗證性因素分析
1. 驗證性因素分析簡介
2. 驗證性因素分析範例簡介
3. JASP分析設定
4. JASP報表解讀
5. 分析結果的撰寫範例
6. 使用measureQ提供建構效度證據
7. 補充說明
8. 參考文獻

Chapter 05   信度分析
1. 信度概念簡介
2. JASP分析設定
3. JASP報表解讀
4. 信度分析寫作範例
5. 參考文獻

Chapter 06   描述統計與關聯性分析
1. 描述統計、相關分析與關聯性分析概念簡介
2. 描述統計JASP分析設定
3. 描述統計JASP報表解讀
4. 相關分析JASP分析設定
5. 相關分析JASP報表解讀
6. 描述統計與相關分析結果撰寫範例
7. 卡方獨立性檢定JASP分析設定
8. 卡方獨立性檢定JASP報表解讀
9. 卡方獨立性檢定分析結果撰寫範例
10. 關聯性分析JASP分析設定
11. 關聯性分析JASP報表解讀
12. 關聯性分析結果撰寫範例
13. 參考文獻

Chapter 07   平均數差異檢定
1. 平均數差異檢定概念簡介
2. 範例說明
4. JASP報表解讀
5. 分析結果撰寫範例
6. 參考文獻

Chapter 08   變異數分析
1. 變異數分析簡介
2. 獨立樣本雙因子變異數分析範例簡介
3. JASP分析操作
4. JASP報表解讀
5. 分析結果撰寫範例
6. 補充說明
7. 參考文獻

Chapter 09   重複測量變異數分析
1. 重複測量變異數分析簡介
2. 重複測量變異數分析範例簡介
3. JASP分析設定
4. JASP報表解讀
5. 分析結果的撰寫
6. 參考文獻

Chapter 10   相關與迴歸分析
1. 相關與迴歸分析概念簡介
2. 相關分析設定
3. 相關分析報表解讀
4. 迴歸分析設定
5. 迴歸分析報表解讀
6. 參考文獻

Chapter 11   邏輯斯迴歸分析
1. 邏輯斯迴歸分析概念簡介
2. 邏輯斯迴歸分析範例簡介
3. 邏輯斯迴歸分析設定
4. JASP報表解讀
5. 分析結果的撰寫
6. 參考文獻

Chapter 12   中介效果分析
1. 中介效果概念簡介
2. 中介效果分析設定
3. 中介效果報表解讀
4. 分析結果撰寫範例
5. 參考文獻

Chapter 13   調節效果分析
1. 調節效果概念簡介
2. 調節變數為連續變數
3. 調節變數為類別變數
4. 範例1分析結果撰寫
5. 範例2分析結果撰寫
6. 結語
7. 參考文獻

Chapter 14   觀察變數路徑分析
1. 路徑分析簡介
2. Lavaan語法簡介
3. PROCESS模型1
4. PROCESS模型7:第一階段中介效果調節模型
5. PROCESS模型14:第二階段中介效果調節模型
6. PROCESS模型21
7. 信度校正潛在路徑分析
8. 參考文獻

Chapter 15   結構方程模型
1. 概念簡介
2. 範例說明
3. JASP操作步驟
4. JASP報表解讀
5. 分析結果撰寫範例
6. 其他
7. 參考文獻

Chapter 16   多項式迴歸分析與潛在一致模型分析
1. 概念簡介
2. 範例簡介
3. 多項式迴歸分析設定
4. 多項式迴歸分析報表解讀
5. 多項式迴歸分析結果撰寫範例
6. 潛在一致模型分析設定
7. 潛在一致模型分析報表解讀
8. 潛在一致模型分析結果撰寫範例
9. 小結
10. 參考文獻

Chapter 17   整合分析
1. 整合分析概念簡介
2. 整合分析進行的流程
3. JASP分析設定
4. 整合分析報表解讀
3. 分析結果撰寫範例
4. 參考文獻

破案而非破頭:
論文解謎初學者
指南
影像發聲:參與
式行動研究方法
基礎統計與R語

探索感官資料:
深入市場資料科

輕鬆搞定!新課
綱系統思考素養
的教與學:不被
機器人取代的能

Crack t
he Case
, Not Y
our Hea
d: A Be
ginner’
s Guide
To Sol
ving Yo
ur Thes
is Puzz
le


投影片((外加)),教學影片((外加))

若要索取未隨書附送(外加)且未於此提供下載的教學資源,請詳洽業務人員(02-27055066#824)(僅提供教師使用)

1HAR JASP完整版P128 更正.JPG
1HAR P153圖13-4_1130120更新.PNG



CH02 資料設定與變數計算簡介
1. JASP 資料管理簡介
  由於JASP沒有資料輸入功能,故研究者須先以其他應用程式(如:Excel 或Google Sheets)輸入資料後,再匯入JASP應用程式進行分析。JASP可直接讀取以下資料格式:純文字檔(.csv) 與SPSS資料檔(.sav)。若匯入的檔案為SPSS資料檔,則資料標籤(label) 與資料類型(類別、次序、連續)也會一同匯入,在資料標籤處呈現這些訊息。
  JASP無法直接編輯或輸入資料,但可對資料檔的變數(variable) 進行邏輯運算,且可對連續變數(變數須設定為「連續」)進行算數運算。OB/HR的研究常以多個題目(items),來測量研究構念(construct)。如以「我喜歡在這裡工作」和「我不喜歡在這裡工作」來測量工作滿意度此潛在(latent) 的心理構念,並且以題目的平均數代表構念的變數。在前述的例子中,「我不喜歡在這裡工作」是反向敘述的題目(reverseworded item),得分越高表示工作滿意度越低,故要先將這些反向計分的題目重新計分後,才能計算所有測量題目的平均數。
  以Fehr等人(2019) 研究為例,該研究以3個題目測量員工工作表現,並以這3題的平均數作為工作表現此潛在構念的研究變數。在其資料檔案中,這3個題目的原始資料變數為perf1、perf2、perf3,也就是研究參與者的答題反應,接著可以撰寫公式或拉曳選單的方式,在JASP製作新的研究變數。在計算這3個變數的平均數之前,需要先確定變數類型為「連續(圖例為尺規)」變數,若為其他變數,如次序變數(圖例為長條圖),雖然資料顯示為數字,但將無法進行四則運算。又如調節效果(moderation) 是OB/HR研究的重要議題,當調節變數為連續變數且研究者要以路徑分析檢驗調節效果時,須先將調節變數(moderator) 與自變數都進行平減(centering) 後,才能計算調節效果的乘積項,此類運算JASP也可以很簡便的進行處理。然而,JASP的邏輯運算功能有限,因此建議讀者除了算術運算之外,其他邏輯運算使用Excel或Google Sheets處理完成之後,再以JASP進行分析。
  JASP可透過「篩選規則」功能選取部分樣本,進行分群分析。由於JASP報表視窗會依分析資料同步更新,一旦選取部分樣本,結果視窗中原有的整體分析結果報表會被部分樣本分析結果報表所取代,也就是單一jasp檔案無法呈現不同樣本的分析結果。研究者若要進行分群比較,建議完成整體樣本分析。之後將該.jasp檔另存新檔,使用「篩選規則」功能(本章第6點)進行分群分析。此外,當一個jasp檔案有很多分析時,容易因檔案過大而使JASP應用程式出錯(bug),甚至閃退。這樣區分個別檔案進行分析的做法,也能避免出現前述問題。
  以下JASP操作介紹,示範如何將資料匯入JASP,進行資料管理與計算新變數,並分別以Fehr等人(2019) 研究一的資料(Study_1_Data.sav) 與Open-Source Psychometrics Project的Rosenberg自尊量表(Rosenberg Self-Esteem Scale) 資料(data.csv 檔)為例。一般資料輸入的方式為每一橫列(row) 表示一筆資料,以問卷調查來說,每一橫列代表一個填答者的反應。而每一直行(column) 表示1個變數,例如:ID(研究參與者編號)、Age(年齡)等(參見圖2-1)。這2個資料檔的下載網址,請見本章節之參考文獻。