 ¦b¹ê§@¤@¶}©l¡A·Q°Ý¤@Ó²³æªº°ÝÃD¡A¹Ï3-1 ¤¤¦³¨âºØ°Êª«ªº¹Ï¤ù¡A¥i¥Hª¾¹D¤À§O¬O¤°»ò°Êª«¶Ü¡H¬Û«H¤j®a³£¥i¥H§Ö³t¦a¦^µª¥X¹Ï¤ù¸Ìªº°Êª«¤À§O¬O¿ß»Pª¯¡A¬Æ¦Ü¦³¨Ç¤HÁÙ¯à·Ç½T¦a»¡¥X¿ß»Pª¯ªº«~ºØ¡A¦ý¬O¡AÁÙ°O±o§Ú̬O±q¤°»ò®ÉÔ¶}©lª¾¹D³o¨â±i¹Ï¤ù¤À§O¬O¿ß»Pª¯ªº¶Ü¡H¨ä¹ê¡A§Ú̪º¤j¸£´N¹³¤H¤u´¼¼zªº¤ÀÃþ¾¹¤@¼Ë¡A³£¬O±q¹L¥hªº¸gÅ礤¡A¨Ì¾Ú¦UÓºÞ¹D©Î¬O´C¤¶¡A±N¿ß»Pª¯ªº¤ÀÃþ¦b¸£®ü¤¤¶i¦æ¾Ç²ß¡A¤ñ¦p¤p®ÉÔ¤÷¥À«üµÛ¿ß»Pª¯ªº¹Ï¤ù§i¶D§ÚÌ¡A³o°Êª«¬O¿ß¡B³o°Êª«¬Oª¯¡A¦¹ºØ°w¹ï°ÝÃD¦³©ú½Tµª®×ªº¾Ç²ß¤è¦¡¬°«ez³¹¸`©Ò»¡ªººÊ·þ¦¡¾Ç²ß¡A³o¤]¬O§Ú̦¹³¹¸`n¾Ç²ß¤H¤u´¼¼z¹ê§@À³¥Îªº¼v¹³¿ëÃѾDzߤ覡¡C ¤§«eªº³¹¸`§ÚÌ»{ÃѤF¤H¤u´¼¼z¡B¾÷¾¹¾Ç²ß¡B²`«×¾Ç²ßµ¥¦Wµü¡A¦¹¤TªÌ¶¡ªºÃö«Y¦p¹Ï3-2 ©Ò¥Ü¡A¤H¤u´¼¼z¥i¥H©w¸q¬°¡A¨Ï¥Î¾÷¾¹¨Ó®i²{¤HÃþªº´¼¼zªº¤è¦¡¡A§Y¨Ï¥Î¾÷¾¹¨Ó§¹¦¨»Ýn¤HÃþ¤~¯à¹F¦¨ªº¥ô°È¡F¦Ó¾÷¾¹¾Ç²ß¬O¤H¤u´¼¼zªº¤@ºØ¹ê²{¤è¦¡¡A»P³q¹L¯S©wºtºâªk¨Ó§¹¦¨¥ô°Èªº¤è¦¡¤£¦P¡A¬O³z¹L¤j¶q¸ê®Æªº¯S¼x¨Ó¾Ç²ß¡A¥H§ä¨ì¨ä¹B¦æ³W«h¨Ó¹F¨ì¤H¤u´¼¼zªº¤èªk¡F¦Ó²`«×¾Ç²ß«h¬O¾÷¾¹¾Ç²ßªº¤@ºØ§Þ³N¡A¨ä¤£»Ý¥Î³z¹L¯S¼x¤uµ{¨Ó´£¨ú¯S¼x¶i¦æ¾Ç²ß¡A¨ä¼Ò«¬¥»¨´N¥]§t¤F¦Û°Ê¯S¼x´£¨úªº¥\¯à¡A¥u»Ýnµ¹¤©¤j¶qªº¼Æ¾Ú»P¹ïÀ³ªºµª®×§Y¥i±o¨ì¾A¦Xªººtºâªk¡A©Î¬OºÙ§@¹Bºâ¼Ò«¬¡C ¾÷¾¹¾Ç²ß¬O³z¹L¤j¶q¸ê®Æªº¯S¼x¨Ó¾Ç²ßªº¤H¤u´¼¼z¡A¦Ó¤@¯ë§ÚÌ·|±Nì©l¸ê®Æ¶°¤À¬°°V½m¸ê®Æ¶°¡]training dataset¡^»P´ú¸Õ¸ê®Æ¶°¡]test dataset¡^¡A¦p¹Ï3-3 ©Ò¥Ü¡A°V½m¶°³q±`·|¥e¤j³¡¤À¤ñ¨Ò¡A¥Î¨Ó°V½m¼Ò«¬¡A°V½m§¹¦¨«á¡A¦A¨Ï¥Î¥¼°Ñ»P°V½mªº´ú¸Õ¶°¨Ó´ú¸Õ¼Ò«¬ªº®Ä¯à¡CµM¦Ó¡A¬°¤FÁ×§K¹LÀÀ¦X¡]overfitting¡^ªº±¡ªpµo¥Í¡A³q±`·|±N°V½m¸ê®Æ¶°¦A¤Á¤À¤@³¡¤À§@¬°ÅçÃÒ¸ê®Æ¶°¡]validationdataset¡^¡]¦p¹Ï3-4¡^¡CÁ|¨Ò¨Ó»¡¡A°V½m¸ê®Æ¶°´N¹³±Ð¬ì®Ñ¡A¥Î¨Ó¾Ç²ßª¾ÃÑ¡AÅçÃÒ¸ê®Æ¶°«h¬O½m²ßÃD¡A¥Î¨Ó½T»{¾Ç²ßªº®ÄªG¡AÁ×§KIÃD¥Ø¡B¦ºÅª®Ñ¤§Ãþªº±¡ªpµo¥Í¡A¦Ó´ú¸Õ¸ê®Æ¶°«h¬O³Ì«á½T»{¾Ç²ß¦¨ªGªº´Á¥½¦Ò¸Õ¡C ¾÷¾¹¾Ç²ßªº°V½m¡B´ú¸Õ¬yµ{¹Ï¦p¹Ï3-5¡A¦bºÊ·þ¦¡¾Ç²ßªº±¡ªp¤U¡A¾÷¾¹¾Ç²ß·|±q¤j¶q¹L¥hªº¸ê®Æ¡]data¡^©M¸gÅç¡]labels¡A§Yµª®×¡^¨Ó¾Ç²ß¡A³q¹L¨ä¯S¼x¡]features¡^¨Ó§ä¥X·sªººtºâªk¡]model¡A§Y¼Ò«¬¡^¨Ó§¹¦¨¥ô°È¡C¦Ó§Ú̱µ¤U¨Ó·|¨Ï¥Îªº¾÷¾¹¾Ç²ß¤è¦¡¬°¤H¤u¯«¸gºô¸ô¡]artificial neural network, ANN¡^¡A¤H¤u¯«¸gºô¸ô¬O¤@ºØ¼Ò¥é¥Íª«¯«¸gµ²ºcªº¼Æ¾Ç¼Ò«¬¡A¦p¹Ï3-6 ©Ò¥Ü¡A¥i¥H¤À¬°¿é¤J¼h¡]input layer¡^¡BÁôÂüh¡]hidden layer¡^¡B¿é¥X¼h¡]output layer¡^¤TÓ¼h¦¸¡A¨ä¤¤ÁôÂüh¼Æ¶q¥i¥H¥Ñ¼Ò«¬³]pªÌ¶i¦æ½Õ¾ã¡AÁôÂühªº¨CÓ¯«¸g¤¸³£¥Nªí¤@Ó©â¶H¯S¼x¡C¤H¤u¯«¸gºô¸ô¤¤¨C¼h¯«¸g¤¸¤§¶¡³£¦³³sµ²¡A¦p¹Ï3-7 ©Ò¥Ü¡A¨C¤@Ó¤U¼h¯«¸g¤¸³£»P«e¤@¼h©Ò¦³¯«¸g¤¸¦³³sµ²¡A¨Ã¾Ö¦³¦U¦ÛªºÅv«»P°¾®t¡A¨äÃö«Y¦p¦¡-1 ©Ò¥Ü¡G a_0^((1)) = £m [〖(W〗_(0, 0)^((1))¡Ña_0^((0))) +〖 (W〗_(0, 1)^((1))¡Ña_1^((0))) +〖 (W〗_(0, 2)^((1))¡Ña_2^((0))) + B_0^((1))] ¡]¦¡ -1¡^ |