 Unit1-3 那些人該懂些統計?
每天一早翻開報紙或打開收音機,就會看到或聽到各類訊息,包括政治、社會、財經、運動、健康、氣象、股票的新聞,除了重要事件的敘述與追蹤,也會參雜許多統計表格、圖形與彙整數字。
購買新車時人們大都以售價、大小、顏色與品牌來度量一部車的價值。有一個試驗將100位男士隨機平均分成兩組A與B,根據些微差異的兩輛新車相片請A組的50位先生評估哪一部車子較為值得購買,而給B組的兩張相片僅其中一張是一位美女與車子的合照。結果B組50人中的37人認為那輛美女加持的車子較為值得,而同一輛車子在沒有美女合照相片的A組中僅有13人選擇它。同理根據多次這類試驗,廣告行銷人士可以利用統計技術,了解市場走向、需求數量、包裝方式與獲利狀態等輔助決策的有用資訊訂定未來策略。
每當大約距離台灣幾千公里,遠在東方太平洋海面出現熱帶性低氣壓時,大家就開始關切是否形成颱風或會不會放颱風假。新聞媒體每天採訪氣象局人員並參考相關國家的預報,組合所謂最新動態,近乎瘋狂的程度真是不可思議。氣象局的專家們除了忙著觀測,也必須應用統計理論與技術進行耗時的模擬,發布包含無可避免的誤差的預測,因此大約每隔30分鐘,預報員或電視主播說明颱風動向的內容不外乎,目前是否形成颱風或未來行進路徑變數很多,不排除有發生大雨的機率,也不排除有襲台的機率。如此不確定性的訊息似乎沒有任何價值,又機率是度量事件出現的機會或可能性的一個0與1之間的實數,可以增減但不該使用於有或沒有的敘述。
人類怎麼知道某種病症應該服用哪些食材或藥品呢,在以前只能透過親嘗百草的經驗,今天醫學科技分析病因或缺乏元素以決定對應成分的比例與劑量。抽菸導致肺癌雖然沒有直接證據,雖然世界各地幾乎出現相同的數據,顯示肺癌病患中抽菸者人數大約是非抽菸者的9倍1,但是沒有辦法透過人體實驗斷定形成因果關係的結論。
其他如社會工作者關心吸毒者勒戒期滿再犯與教育程度的關聯,選舉之前研究支持度與選民意向的民意調查,各類保險方案與保費的訂立,製造業確保產品品質必要的管制措施,保持健康狀態的運動種類、方式、時程,公益彩券的合理獎項與金額,交通訊號紅黃綠燈的變化規則,蔬菜水果品種選擇、栽種方式、行銷策略,數也數不清的學者、專業人士、分析師與管理者的主要或部分工作幾乎都離不開統計。
Unit8-1 解讀農藥殘留新聞報導
只要鍵入蔬果農藥殘留,搜尋引擎就會列出不計其數的項目,請看其中三則新聞報導
1.台北市衛生局2016/05/23公布,蔬果零售業者、超市、賣場、批發市場及學校午餐供應商等處,4月份抽驗60件蔬果產品,結果2件不符合規定,不合格率3.3%。 2.台中市2015/12/18公布,超市、賣場、肉品加工廠、農會蔬果產銷班11月隨機抽驗蔬果肉片及文蛤等24件食材,其中14件蔬果、3件農藥殘留超標。 3.食藥署北區管理中心進口蔬果農藥殘留公布邊境查驗統計,2015年報驗29,000多批,抽驗比率3.37%,不合格率6.75%,共234批。
台北市與台中市公布的數據來源包括許多處所,雖然說明檢驗數量、不合格件數,但是彙整不同處所或不同產品的數據,容易造成資訊混淆。由於具破壞性與數量龐大,蔬果農藥殘留普查當然不可行,然而在各個蔬果產地、匯集處所或盤商,針對個別作物進行機率方式抽樣調查應該可行。食品藥物署,邊境查驗統計的這則新聞數據有些奇怪,如果抽樣比率的數字正確,總共檢驗件數大約等於1,000批,那麼不合格率6.75%,共234批,這種奇怪的數字組合,是媒體誤植?
既然是新聞,閱讀對象當然是一般讀者,這類政府公布的數據除了提供主管單位要求不合格產品下架或業者送辦的訊息外,民眾可以獲得甚麼資訊以輔助日常生活的決策?也許不合格產品不會流入市場,但是沒有查驗的產品呢?又台北市2016年4月抽驗調查結果不合格率3.3%,這類綜合、多項、不同類別物件的彙整數據也沒有太多用處,更有可能冤枉某些處所或作物的聲譽。
農藥殘留是一個複雜且開放性的問題,醫藥與農產專家學者不斷研究不同作物類別、不同時期、不同地區適用那些農藥,多少劑量與殘留容許量。統計方法當然成為這類研究進行試驗設計與彙整結論的重要工具,有興趣的讀者們應該不難從眾多文獻得到相關資訊。
從消費者角度,農藥殘留檢驗報告應該指名哪一處所、哪一作物、哪一農藥超標,還有不合格率,以利計算食用蔬果農藥殘留超標的風險。
某處所某作物某種農藥超標的不合格率,必須根據抽樣方式與抽樣數量,決定抽驗數量則必須建立在可容許的顯著水準,唯有如此才能提供民眾購買蔬果有意義的資訊。
決定抽驗數量
讓p=不合格率,1-p = 合格率,物件檢驗結果只有合格或不合格出現,是一個柏氏變數,因此檢驗n物件,不及格或農藥殘留超標件數是一個二項變數。所以不合格率p等於母體比率參數,當顯著水準等於α,信賴區間半矩<=B,樣本長度n >= zα/22p(1-p)/ B2。
假設邊境農藥殘留檢驗超標比率等於4.5%,讓顯著水準等於0.05,z.025 = 1.96,信賴區間半矩B = 0.015,所以95%信賴程度超標比率介於(0.03, 0.06),最小檢驗數量 n >= (1.96)2 (0.045)(0.955)/(0.015)2 >= 734,
假設超標比率等於3%,信賴區間半矩B = 0.015,最小檢驗數量n >= 3.8416 (0.03)(0.97)/(0.01)2 >= 1118
農藥殘留超標的風險
隨機選購n物件,沒有包括任何超標物件的機率= (1-p)n, 剛好1超標物件的機率= n p (1-p)n-1 剛好2超標物件的機率= nC2 p2 (1-p)n-2 讓n>=k,剛好k超標物件的機率= nCk pk (1-p)n-k
至少包含1超標物件的機率 = 1 - (1-p)n, 至少包含k+1超標物件的機率 = 1 - (1-p)n - n p (1-p)n-1 -…- nCk pk (1-p)n-k
假設某批進口水果邊境查驗不合格率等於4.5%,沒有達到退貨標準,除了檢驗不合格銷毀外,其餘流入市場。如果總共購買這批水果4次,沒有包括任何超標物件的機率 P(0) = 0.9554 = 0.83,剛好1超標物件的機率 P(1)= 4 * 0.045*0.9553 = 0.16 如此,至少包含1超標物件的機率 = 1 – 0.83 = 0.17 至少包含1超標物件的機率 = 1 – 0.83 – 0.16 = 0.01
|