²Ä¤@³¹ ¥j¨å¾÷²v 1-1 ¶°¦X²z½× 1-2 ±Æ¦C»P²Õ¦X 1-3 ¾÷²v¤§n¯À 1-4 ±ø¥ó¾÷²v»P¨©¤ó©w²z 1-5 ¿W¥ß¨Æ¥ó
²Ä¤G³¹ Â÷´²«¬ÀH¾÷ÅÜ¼Æ 2-1 ¾÷²v½è¶q¨ç¼Æ(Probability Mass Function, PMF) 2-2 ²Ö¿n¤À§G¨ç¼Æ(Cumulative Distribution Function) 2-3 ´Á±æÈ 2-4 ÀH¾÷ÅܼƤ§¨ç¼Æ»PÅܼÆÅÜ´« 2-5 ±ø¥ó½è¶q¨ç¼Æ(Conditional PMF) 2-6 °Ê®t¥Í¦¨¨ç¼Æ(Moment generating function, MGF) ªþ¿ý¡GTaylor Series and Maclaurin Series
²Ä¤T³¹ ±`¥ÎªºÂ÷´²«¬¾÷²v¤À§G 3-1 §¡¤Ã¤À§G(Uniform Distribution) 3-2 §B§V§Q»P¤G¶µ¤À§G 3-3 ´X¦ó¤À§G 3-4 t¤G¶µ¤À§G 3-5 ¶W´X¦ó¤À§G 3-6 ¥¬ªüªQ¤À§G 3-7 ¦h¶µ¤À§G
²Ä¥|³¹ ¦h«Â÷´²«¬ÀH¾÷ÅÜ¼Æ 4-1 Áp¦X¾÷²v½è¶q¨ç¼Æ 4-2 ÀH¾÷ÅܼƤ§¨ç¼Æ 4-3 ¦@Åܲ§¼Æ(Covariance) 4-4 ±ø¥ó¾÷²v½è¶q¨ç¼Æ 4-5 ¿W¥ß(Independent)ÀH¾÷ÅÜ¼Æ 4-6 ±ø¥óÁp¦X¾÷²v½è¶q¨ç¼Æ 4-7 ÅܼÆÂà´« 4-8 ¤Tºû¥H¤W¤§Â÷´²ÀH¾÷ÅܼÆ
²Ä¤³¹ ³sÄò«¬ÀH¾÷ÅÜ¼Æ 5-1 ²Ö¿n¤À§G¨ç¼Æ»P¾÷²v±K«×¨ç¼Æ 5-2 ´Á±æÈ»PÅܲ§¼Æ 5-3 ÅܼÆÅÜ´« 5-4 ±ø¥ó¾÷²v±K«×¨ç¼Æ 5-5 °Ê®t¥Í¦¨¨ç¼Æ 5-6 ¯S¼x¨ç¼Æ ( Characteristic Function ) ªþ¿ý
²Ä¤»³¹ ±`¥Îªº³sÄò«¬¾÷²v¤À§G 6-1 §¡¤Ã¤À§G(Uniform Distribution) 6-2 «ü¼Æ¤À§G¡]Exponential distribution¡^ 6-3 Gamma (ƒ·) ¤À§G 6-4 ±`ºA¤À§G 6-5 Beta¤À§G¡BWeibull¤À§G¤ÎCauchy¤À§G 6-6 ¥Ñ±`ºA¤À§G©Òl¥Í¤§¾÷²v¤À§G ªþ¿ý¤@¡G±`¥Îªº³sÄò«¬¾÷²v¤À§G ªþ¿ý¤G¡G¼Ð·Ç±`ºA¤À§G¤§CDF ªþ¿ý¤T¡G¯S®í¨ç¼Æ
²Ä¤C³¹ ¦h«³sÄò«¬ÀH¾÷ÅÜ¼Æ 7-1 Áp¦X¾÷²v±K«×¨ç¼Æ (Joint PDF) 7-2 ¤GºûÀH¾÷ÅܼƤ§¨ç¼Æ 7-3 ±ø¥ó¾÷²v±K«×¨ç¼Æ 7-4 ¿W¥ßÀH¾÷ÅÜ¼Æ 7-5 ¦hÅܼƪºÅܼÆÅÜ´« 7-6 ÂùÅܼƱ`ºA¤À§G 7-7 ¤Tºû¥H¤W¤§³sÄò«¬ÀH¾÷ÅÜ¼Æ ªþ¿ý¡G«¿n¤À»P®y¼Ð¡]Åܼơ^ÅÜ´«
²Ä¤K³¹ ¾÷²v¤£µ¥¦¡¤Î¤¤¥¡·¥©w²z 8-1 ¾÷²v¤£µ¥¦¡ 8-2 ¤j¼Æªk«h¡]Law Of Large Numbers¡^ 8-3 ¤¤¥¡·¥©w²z¡]Central limit theorem¡^
²Ä¤E³¹ ¨ú¼Ë»P¦ôp 9-1 ¨ú¼Ë 9-2 ÂI¦ôp¾¹ (Point Estimator) 9-3 ³Ì¤j¥i¯à©Ê¦ôp¾¹ (Maximum-Likelihood Estimator, MLE) 9-4 °Ï¶¡¦ôp
²Ä¤Q³¹ Ár´ú´ú¸Õ¡]Hypothesis Testing¡^ 10-1 ²¤¶ 10-2³Ì¤j¥i¯à©Ê(Maximum Likelihood, ML) ÀË´ú¾¹ 10-3 ³æÃ䪺Ár´ú´ú¸Õ 10-4 ÂùÃäÁr´ú´ú¸Õ 10-5 Bayes ¨M©wªk«h
²Ä¤Q¤@³¹ ÀH¾÷µ{§Ç¡]Random Process¡^¾É½× 11-1 ÀH¾÷µ{§Ç¤§©w¸q 11-2 ÀH¾÷µ{§Ç¤§¤À§G¨ç¼Æ 11-3 ¦Û¬ÛÃö¨ç¼Æ¤Î¤¬¬ÛÃö¨ç¼Æ 11-4 °ª´µÀH¾÷µ{§Ç¡]Gaussian Random Process¡^
|
|